Search results for "Normal bundle"

showing 5 items of 5 documents

Stabilization of the cohomology of thickenings

2016

For a local complete intersection subvariety $X=V({\mathcal I})$ in ${\mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of ${\mathbb P}^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t=V({\mathcal I^t})$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new…

Pure mathematicsSubvarietyMathematics::Complex VariablesKodaira vanishing theoremGeneral Mathematics010102 general mathematicsComplete intersectionZero (complex analysis)Vector bundleCodimensionMathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciencesCohomologyMathematics - Algebraic GeometryMathematics::Algebraic GeometryNormal bundle0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryUncategorizedMathematicsAmerican Journal of Mathematics
researchProduct

On the volume of unit vector fields on spaces of constant sectional curvature

2004

A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima.

Parallelizable manifoldGeneral MathematicsGEOMETRIA RIEMANNIANAMathematical analysisRiemannian manifoldSubmanifoldNormal bundleUnit tangent bundleMathematics::Differential GeometrySectional curvatureMathematics::Symplectic GeometryTangential and normal componentsTubular neighborhoodMathematics
researchProduct

Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds

1979

Homotopy groupExact sequencePure mathematicsParallelizable manifoldNormal bundleIsotopyMathematics
researchProduct

Normal Coulomb Frames in $${\mathbb{R}}^{4}$$

2012

Now we consider two-dimensional surfaces immersed in Euclidean spaces \({\mathbb{R}}^{n+2}\) of arbitrary dimension. The construction of normal Coulomb frames turns out to be more intricate and requires a profound analysis of nonlinear elliptic systems in two variables. The Euler–Lagrange equations of the functional of total torsion are identified as non-linear elliptic systems with quadratic growth in the gradient, and, more exactly, the nonlinearity in the gradient is of so-called curl-type, while the Euler–Lagrange equations appear in a div-curl-form. We discuss the interplay between curvatures of the normal bundles and torsion properties of normal Coulomb frames. It turns out that such …

Nonlinear systemConservation lawLorentz spaceNormal bundleMathematical analysisTorsion (algebra)CoulombHarmonic mapMathematical physicsMathematicsScalar curvature
researchProduct

Critical points of higher order for the normal map of immersions in Rd

2012

We study the critical points of the normal map v : NM -> Rk+n, where M is an immersed k-dimensional submanifold of Rk+n, NM is the normal bundle of M and v(m, u) = m + u if u is an element of NmM. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R-3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we a…

Focal setImage (category theory)Mathematical analysisCritical pointsStrong principal directionsSubmanifoldCombinatoricsNormal mapNormal bundleNormal mappingOrder (group theory)Geometry and TopologyVeronese of curvatureEllipse of curvatureMATEMATICA APLICADAMathematicsTopology and its Applications
researchProduct