Search results for "Normal bundle"
showing 5 items of 5 documents
Stabilization of the cohomology of thickenings
2016
For a local complete intersection subvariety $X=V({\mathcal I})$ in ${\mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of ${\mathbb P}^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t=V({\mathcal I^t})$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new…
On the volume of unit vector fields on spaces of constant sectional curvature
2004
A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima.
Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds
1979
Normal Coulomb Frames in $${\mathbb{R}}^{4}$$
2012
Now we consider two-dimensional surfaces immersed in Euclidean spaces \({\mathbb{R}}^{n+2}\) of arbitrary dimension. The construction of normal Coulomb frames turns out to be more intricate and requires a profound analysis of nonlinear elliptic systems in two variables. The Euler–Lagrange equations of the functional of total torsion are identified as non-linear elliptic systems with quadratic growth in the gradient, and, more exactly, the nonlinearity in the gradient is of so-called curl-type, while the Euler–Lagrange equations appear in a div-curl-form. We discuss the interplay between curvatures of the normal bundles and torsion properties of normal Coulomb frames. It turns out that such …
Critical points of higher order for the normal map of immersions in Rd
2012
We study the critical points of the normal map v : NM -> Rk+n, where M is an immersed k-dimensional submanifold of Rk+n, NM is the normal bundle of M and v(m, u) = m + u if u is an element of NmM. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R-3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we a…